Space-time Isogeometric Analysis of Parabolic Evolution Equations
نویسندگان
چکیده
We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with lowand high-order IgA spaces.
منابع مشابه
Isogeometric analysis and proper orthogonal decomposition for parabolic problems
We investigate the combination of Isogeometric Analysis (IGA) and proper orthogonal decomposition (POD) based on the Galerkin method for model order reduction of linear parabolic partial differential equations. For the proposed fully discrete scheme, the associated numerical error features three components due to spatial discretization by IGA, time discertization with the θ -scheme, and eigenva...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملIsogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow
We present a numerical study of the spinodal decomposition of a binary fluid undergoing shear flow using the advective Cahn-Hilliard equation, a stiff, nonlinear, parabolic equation characterized by the presence of fourth-order spatial derivatives. Our numerical solution procedure is based on isogeometric analysis, an approximation technique for which basis functions of high-order continuity ar...
متن کاملWavelet-In-Time Multigrid-In-Space Preconditioning of Parabolic Evolution Equations
Two space-time variational formulations of linear parabolic evolution equations are considered, one is symmetric and elliptic on the trial space while the other is not. In each case, a space-time Petrov–Galerkin discretization using suitable tensor product trial and test functions leads to a large linear system of equations. The well-posedness of this system with respect to parabolic norms indu...
متن کاملConvergence and optimal control problems of nonlinear evolution equations governed by time-dependent operator
We study an abstract nonlinear evolution equation governed by time-dependent operator of subdi erential type in a real Hilbert space. In this paper we discuss the convergence of solutions to our evolution equations. Also, we investigate the optimal control problems of nonlinear evolution equations. Moreover, we apply our abstract results to a quasilinear parabolic PDE with a mixed boundary cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015